def _take_items_from_list_and_put_them_into_string(self, list):
string = ''
for element in list:
string += element + ','
if len(string) > 0 and string[-1] == ',':
string = string[0:-1]
return string
class Timer extends React.Component{
state ={
time: 10
};
setInvt = () =>{
let t = this.state.time
if(t<=1){
clearInterval(this.invertal)
}
this.setState({time: t-1})
}
componentDidMount(){
this.invertal = setInterval(this.setInvt, 1000)
}
render(){
return (<label>{this.state.time}</label>)
}
}
export {Timer}
foreach ($desired_components as $name => $junk) {
list($component_value, $component_comments) = self::unpackPair($desired_components[$name]);
$desired_components[$name] = self::packPair(round($component_value, 2), $component_comments);
}
/**
* Creates hash of client/customer password
* @param string $password The actual password
* @return string MD5 hash of password with salt
*/
public static function hashPassword($password)
{
return md5($password . $password. 'SOME-SECRET-STRING' . $password);
}
// enum - full enumeration of knapsack solutions
// (C) Joshua Knowles
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <stdbool.h>
FILE *fp; // file pointer for reading the input files
int Capacity; // capacity of the knapsack (total weight that can be stored)
int Nitems; // number of items available
int *item_weights; // vector of item weights
int *item_values; // vector of item profits or values
int *temp_indexes; // list of temporary item indexes for sorting items by value/weight
int QUIET=0; // this can be set to 1 to suppress output
extern void read_knapsack_instance(char *filename);
extern void print_instance();
extern void sort_by_ratio();
extern int check_evaluate_and_print_sol(int *sol, int *total_value, int *total_weight);
void enumerate();
int next_binary(int *str, int Nitems);
int main(int argc, char *argv[])
{
read_knapsack_instance(argv[1]);
print_instance();
enumerate();
return(0);
}
void enumerate()
{
// Do an exhaustive search (aka enumeration) of all possible ways to pack
// the knapsack.
// This is achieved by creating every binary solution vector of length Nitems.
// For each solution vector, its value and weight is calculated.
int i; // item index
int solution[Nitems+1]; // (binary) solution vector representing items packed
int best_solution[Nitems+1]; // (binary) solution vector for best solution found
int best_value; // total value packed in the best solution
double j=0;
int total_value, total_weight; // total value and total weight of current knapsack solution
int infeasible; // 0 means feasible; -1 means infeasible (violates the capacity constraint)
// set the knapsack initially empty
for(i=1;i<=Nitems;i++)
{
solution[i]=0;
}
QUIET=1;
best_value=0;
while(!(next_binary(&solution[1], Nitems)))
{
/* ADD CODE IN HERE TO KEEP TRACK OF FRACTION OF ENUMERATION DONE */
// calculates the value and weight and feasibility:
infeasible=check_evaluate_and_print_sol(solution, &total_value, &total_weight);
/* ADD CODE IN HERE TO KEEP TRACK OF BEST SOLUTION FOUND*/
}
/* ADD CODE TO PRINT OUT BEST SOLUTION */
}
int next_binary(int *str, int Nitems)
{
// Called with a binary string of length Nitems, this
// function adds "1" to the string, e.g. 0001 would turn to 0010.
// If the string overflows, then the function returns 1, else it returns 0.
int i=Nitems-1;
while(i>=0)
{
if(str[i]==1)
{
str[i]=0;
i--;
}
else
{
str[i]=1;
break;
}
}
if(i==-1)
{
return(1);
}
else
{
return(0);
}
}
A genuine UoM lab.
const setFormFlag(state){
state.formFlag ? state.formFlag = false : state.formFlag = true;
}
try {
synchronized(this) {
Object obj = null;
if (obj.hashCode() == -1) {
obj = new Object();
}
}
} catch (Throwable t) {
throw t;
} finally {
try {
synchronized(this) {
Object obj = null;
if (obj.hashCode() == -1) {
obj = new Object();
}
}
} catch (Throwable t) {
throw t;
} finally {
try {
synchronized(this) {
Object obj = null;
if (obj.hashCode() == -1) {
obj = new Object();
}
}
} catch (Throwable t) {
throw t;
} finally {
System.exit(1);
}
}
}
Cool code
protected override void OnStartup(StartupEventArgs e)
{
Current.DispatcherUnhandledException += ApplicationUnhandledException;
base.OnStartup(e);
#if (DEBUG)
RunInDebugMode(e.Args);
#else
RunInReleaseMode(e.Args);
#endif
}
#endregion
private static void RunInReleaseMode(string[] args)
{
AppDomain.CurrentDomain.UnhandledException += AppDomainUnhandledException;
try
{
SplashScreen screen = new SplashScreen(@"Images\splashscreen.png");
screen.Show(true, true);
RunInDebugMode(args);
}
catch (Exception ex)
{
HandleException(ex);
}
}
private static void RunInDebugMode(string[] args)
{
var bootstrapper = new Bootstrapper();
bootstrapper.Run();
}
<?php
class CasinoCode
{
CONST POST = 'POST';
CONST GET = 'GET';
$data = $this->callAPI('/hidden', [], self::POST);
production code of an API with dozens of millions of requests per day.
public class CustomBoolean {
private Container<java.lang.Boolean> booleanContainer;
public CustomBoolean(Container<Boolean> booleanContainer) {
CustomBoolean custom_boolean = getThis();
custom_boolean.booleanContainer = booleanContainer;
}
private <T extends Object> T getThis() {
return (T) (Object) (T) this;
}
public Container<Boolean> getBooleanContainer() {
return booleanContainer;
}
public static CustomBoolean create(Boolean value) {
return new CustomBoolean(Container.builder().setValue(true).build());
}
public static void main(String[] args) {
System.out.println(CustomBoolean.create(Boolean.TRUE).getBooleanContainer().getObject());
}
public static class Container<T extends Object> {
private T object = null;
private Container(T object) {
Container<T> _this = getThis();
_this.object = (T) (Object) object;
}
private <T extends Object> T getThis() {
return (T) (Object) (T) this;
}
public static Builder builder() {
return new Builder();
}
public T getObject() {
return object;
}
public static class Builder<T extends Object> {
private T value;
public Builder<T> setValue(T value) {
Container<T> _this = getThis();
_this.object = (T) (Object) value;
return this;
}
private <T extends Object> T getThis() {
return (T) (Object) (T) this;
}
public Container build() {
return new Container(value);
}
}
}
} // Dort#0001
trolled
if (cookiesBannerHeight !== 0 && isMobile) {
style = {
top: cookiesBannerHeight === 0 ? 0 : cookiesBannerHeight
}
}
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
int main(void){
void run_func(char *map[], char *fnt , char *km , float *x , float *y , int line , int row , int lift );
char *long_met[3][8] = {{"mile","0.621371" , "yard","1093.61" , "fut","3280.84" , "duim","39370.1" } ,
{ "mile" ,"1.60934" , "yard","0.0009144" , "fut","0.0003048" , "duim","0.0000254"},
{"kilometer","1" , "meter","1000" , "stmeter","100000" , "mmeter","1000000" } };
char *amount[3][4] = { { "gallon" , "0.264172" , "quarta" , "1.05669" } ,
{"gallon" , " 3.78541" , "quarta" , "0.946353" },
{"litr" , "1" , "mililitr" , "1000" }};
char *mass[3][8] = { {"eng.tonna","0.984207" , "amer.tonna","1.10231" , "stone","157.473" , "funt","2204.62" } ,
{ "eng.tonna" , "1.01605" , "amer.tonna", "0.907185" , "stone","0.00635029" , "funt","0.000453592"},
{"tonna","1" , "kilogram" , "1000" , "miligram","100000" , "microgram","1000000" }};
char **cp;
char *buf_data;
char *fnt_sys;
char *mtr_sys;
char *word[100];
while(1){
int bg = 0,convert_ch = 3,y = 0, d = 0, numb = 0;
float mn =0 , xm = 0 ;
printf("%s", "enter data for converter: ");
fgets( (char *) word, 99 ,stdin);
buf_data = strtok((char *) word, " ");
if( ! strcmp(buf_data, "funt.sys" ) ){
convert_ch = 0;
}
else if( ! strcmp(buf_data, "metric.sys" ) ){
convert_ch = 1;
}
for( bg = 0 ; buf_data != NULL; buf_data = strtok(NULL, " ") , bg++ ) {
switch(bg){
case 1:
if( !strcmp("long_met" , buf_data ) ){
y = sizeof(*long_met) / sizeof(long_met[0][0]);
d = sizeof(long_met) / sizeof(long_met[0][0]);
cp = &long_met[convert_ch][0] ;
}
else if(!strcmp("amount" , buf_data ) ){
y = sizeof(*amount) / sizeof(amount [0][0]);
d = sizeof(amount) / sizeof(amount[0][0]);
cp = &amount[convert_ch][0] ;
}
else if(!strcmp("mass" , buf_data ) ){
y = sizeof(*mass ) / sizeof(mass[0][0]);
d = sizeof(mass ) / sizeof(mass[0][0]);
cp = &mass[convert_ch][0] ;
}
break;
case 2:
fnt_sys = buf_data;
break;
case 3:
mtr_sys = buf_data;
break;
case 4:
numb = atoi(buf_data);
break;
}
}
if( !y || !d || !cp || convert_ch == 3 || !numb ){
puts("error");
}
else{
run_func( cp, fnt_sys , mtr_sys , &mn , &xm , y , d , convert_ch );
if( !mn || !xm ){
puts("error");
} else{
printf("%f\n" , !convert_ch ? (mn / xm ) * numb : ( mn * xm ) * numb );
}
}
}
return 0;
}
void run_func(char *map[], char *fnt , char *km , float *x , float *y , int line , int row , int lift ){
int m ;
if( ( lift ) ){
row -= line;
}
for( m = 0 ; m <= line ; m++){
if(!strcmp(fnt,map[m])){
*x = atof(map[m + 1] ) ;
break;
}
}
for( m = (row - line) ; m <= row - 1 ; m++){
if( !strcmp( km , map[m] ) ){
*y = atof(map[m + 1 ] );
break;
}
}
}
# Create vpc peering connection
response = ec2.delete_vpc_peering_connection(peer_connection_id)
a part of AWS Landing Zone solution
if(typeof(sortOrder) != "boolean"){
return items;
}
filtered.sort(function (a, b) {
if(sortOrder == true){
return (CustomOrder(a.status) > CustomOrder(b.status) ? 1 : -1);
}
else if(sortOrder == false){
return (CustomOrder(a.status) < CustomOrder(b.status) ? 1 : -1);
}
});
The status
property is a string ("Started", "Running", "Failed", "Finished", etc.), and CustomOrder
is a function with a switch that just returns a predefined integer for each string. I switched CustomOrder to just be a simple lookup table object, and the sort call was changed to filtered.sort((a, b) => CustomOrder[a.status] - CustomOrder[b.status]);
socket.on('newMessage', (messageObj) => {
if (roomNumber === messageObj.roomNumber) {
console.log("message received:" + messageObj.message);
$('#messages').append($('<li>').text(messageObj.userName + ' : ' + messageObj.message));
}
});
socket.in wasn't behaving as advertised (broadcasting to all rooms). I decided to take matters into my own hands.